
DRAFT

The Warden Protocol
The Warden Protocol Team1,�

1Modular Blockchain Infrastructure for Omnichain Applications

This document contains forward-looking statements and infor-
mation relating to Warden Labs, its business plan, strategy, and
the relevant market. These statements are based on the be-
liefs of, assumptions made by, and information currently avail-
able to the Warden Lab’s management. They reflect manage-
ment’s current views of future events and are subject to risks
that could cause Warden Lab’s actual results to differ mate-
rially from those contained in the forward-looking statements.
Investors are cautioned not to place undue reliance on these
forward-looking statements. The company does not undertake
any obligation to update these forward-looking statements.

Modular Security | Omnichain Interoperability | Chain Abstractions

Correspondence: info@wardenprotocol.org

Abstract
In this paper, we present the Warden Protocol - modu-
lar L1 blockchain infrastructure for omnichain applications,
“OApps”. Our mission is to empower developers to simply
launch secure OApps.

Warden Protocol
In monolithic blockchain architectures, all security compo-
nents of an application are tightly integrated into a single,
centralised unit. For example, many early Bitcoin exchanges
concentrated user funds in single hot wallets with unen-
crypted keys stored on single servers. Due to this component
bundling, a vulnerability in the system can compromise
any and all applications. Contrary to monolithic end-to-end
blockchain architectures, we have modularized the Warden
Protocol for security, interoperability and chain abstraction.

Application developers can assemble and disassemble a
set of composable modules and use standardised, chain
agnostic syntax, to create a new type of user experience -
OApps. Each OApp component is developed, tested, docu-
mented, and benchmarked distinctly and be used individually
or in combination with other components. All components
are configurable by OApp developers. Any application
developer can add Warden Protocol custom modules to their
existing base app to turn their application into an OApp.

Warden Protocol is a high throughput, low latency, in-
stant finality blockchain for OApp developers. Utilising
Warden Protocol as a shared platform, OApp developers
can tap into enshrined infrastructure and pool resources,
granting them a competitive advantage lacking in standard
applications. They can sidestep establishing and maintaining
a validator set and relayer network, and can leverage built-in
support for keychains, intents, block explorers, wallets,

oracles, bridge, data indices and security monitors. This re-
duces development costs, accelerates deployment timelines,
and permits OApp developers to concentrate on creating
application specific moats, rather than duplicating tools,
resources and infrastructure.

What are OApps?

OApps are a powerful evolution to traditional smart
contracts. They consist of three parts: application and
contracting logic, a stack of keychains, and a user-supplied,
parameterizable intent configurator. Owing to this OApps
can achieve remarkable features: they are modularly secure,
omnichain interoperable and chain-abstracted.

OApps are modularly secure. They can support the
same applications deployed with different security models,
thereby decoupling protocol-layer from application-layer
security. The result is homogeneous protocol security, with
a heterogeneous application security that minimises security
fragmentation, and captures a user’s true intents when
interacting with an application. Users can choose their trust
assumptions, while application developers retain the network
effects of being able to use a shared protocol security. Any
TVL intensive DeFi application, that necessitates substantial
deposits, such as liquid staking protocols, AMMs and DEXs
or money markets, could experience significant advantages
from deploying as an OApp.

OApps are omnichain interoperable. Collectively, they
form an application mesh topology. This mesh is resiliently
designed for cross-interoperability, overcoming isolated and
fragmented ecosystems. Their connections are persistent
and universal - whether it’s letting users seamlessly swap
across supported chains, interact with applications from
other chains or exchange native assets for wrapped ones.

OApps are chain-abstracted. Whereas traditional smart
contract applications only target users of a single chain,
OApps can sign transactions and messages targeted for any
other foreign chain. They can read and write to other chains
which enables a host of completely new use cases enabled
by OApps.

OApps are remarkably lightweight and straightforward
to build. Developers can write in the language they love, use
the tooling, frontend libraries, node and RPC providers, and
wallet providers that they are most accustomed to.

Warden Protocol Team | bioRχiv | April 25, 2024 | 1–5

DRAFT

Fig. 1. Warden Protocols modular architecture unbundles the application layer for
greater and more resilient security

Unbundling The Security Stack

Today digital assets are woefully vulnerable to determined
adversaries, and web3 will not onboard billions of users
unless we rethink, unbundle and specialize the security stack.

Shared protocol security entails applications on a given
infrastructure adhering to the infrastructure’s security re-
quirements, like L2 solutions. These monolithic systems
impose equal security on their applications. For instance,
an application on Optimism has a 7 day dispute delay
window which cannot be ignored or configured. Polkadot or
Avalanche are multichain networks that use shared protocol
security models to safeguard their parachains and subnets. A
new rollup on Ethereum or Celestia receives an even protocol
security from the validator set. This security inheritance
is meant to be a guarantee for users - they can expect the
guarantee to be upheld by whichever app they are using on
the rollup, regardless of the applications internal security
policy. However, there are drawbacks - depending on the
type of error detected on the L1, vulnerabilities can cascade.
A vulnerability on the protocol suddenly doesn’t affect a
single application, but depending on the type of bug, it can
impact several, leaving developers and users with no means
of recourse or correctional mechanism.

In contrast, isolated security allows each application to
define its own security. This is sometimes seen on apps built
on messaging protocols, like LayerZero. Each application
developer defines its own relayer, oracle and validation
libraries alongside a set of other security configurations.
Critically, this is without guaranteeing components are
independent and free from collusion. While this security
configuration ensures responsiveness and adaptability, it
transfers responsibility for assessing risks to end users. Each
user has to separately validate the risk inclined with every
application they want to use. It also assumes developers are
trusted, reliable and honest third-parties. Should application
developers be able to modify and cherry-pick how many
nodes and which nodes execute transactions? Should they
be able to edit security configurations without user consent?
After all, there is no security layer on the application

guarding against misuse.

Warden Protocol distinguishes between application-,
and protocol-level security. Each OApp inherits protocol
security from Warden Protocol, acting as a security ag-
gregator and stabilising force for the OApp ecosystem.
Security guarantees include its replicated, permissionless
proof-of-stake consensus mechanism, the fault-tolerant and
liveness properties of consensus, the validator set and node
authentication, its secure channel communication, fork
detection and handling, as well as its finality and censorship
resistance. OApp developers retain network effects, and
they don’t have to bootstrap new validators for nascent
applications. They don’t incur the overhead of having to
operate their own infrastructure, they have a lower security
budget and are less susceptible to sybil-, long-range, eclipse
or 51 percent attacks which will all contribute to lowering
the barriers to new deployment.

Additionally, OApps inherit application-level security
from keychains, and their intent engines. This is critical,
because the application layer is closest to users, and repre-
sents the largest attack vector. With keychains and the intent
engine, OApp users can configure distributed key creation,
signatures, threshold signature schemes, role-based access
controls and administrate signing authorization. This creates
resilience against private key exploits, theft, spoofing and
sweeping.

Thanks to this modularity, OApps can support the same ap-
plication deployed with different security models, achieving
homogenous protocol security with heterogeneous, isolated
application security. Users can choose their trust assumption,
while application developers retain the network effects of
being able to use the same shared protocol security without
incurring security fragmentation when scaling the number
of applications. In addition, they stay responsive when new
security technologies emerge.

Modular Security
A keychain is any custodian of private keys. Keychains
generate, store keys and sign transactions. Users can use
Warden’s intent configurator to configure their own keychain
and application security setting, putting them in control
of defining their own spectrum of custody: from holding
their own keys, to sharding their keys and splitting them
between users and enterprises, to delegating custody to an
ISO-compliant, SOC-audited digital asset custodian, through
to leveraging the latest in distributed key management pro-
tocols. Warden is also exploring a new variant of multisig,
composed of different keychains and custodial models
collaborating via user-driven intents.

Each OApp has an intent configurator. This can be ac-
cessed via a GUI or over CLI, and lets a user interface and
configure intents with their chosen keychain. Intents are a
set of user-supplied conditions under which a keychain signs

2 | bioRχiv Warden Protocol Team | Modular Blockchain Infrastructure for Omnichain Applications

DRAFT

a transaction. They are predicates over transactional data
and external inputs; an arbitrary on-chain code evaluated at
runtime by the settlement layer that enforces the terms of
an interaction in a transparent, human-readable form. The
OApps modular security stack embeds user intents directly
into the applications security architecture.

Today there is no standard mechanism to express, com-
pose and parse intents, similar to a time before SQL was
created, when querying databases was tricky. In order to
enable arbitrary use cases from several OApps, we unified
the syntax with which users can express their intents and
configure their keychain. This embedded, intent specific
language (“ISL”) standardises interface-, transmission
semantics and execution behaviours. It’s a composable,
extensive, declarative, human-readable, English-like lan-
guage purpose built so users can configure and preview the
transaction conditions for their keychains.

Because web3 users have complicated interaction schemes
with assets across multiple chains and wallets, we incorpo-
rated feeds into our language. Warden Protocol, provides a
fully integrated, general purpose price, enshrined oracle built
into the chain that leverages protocol security to provide
guaranteed per block price updates at millisecond refresh
rates. Using the Warden Protocols validator set, the oracle
ties price updates to consensus where each update requires
a two-third participation from validators to be posted on the
chain. Thanks to this enshrined oracle and our ISL, user use
cases like scheduled payments, subscriptions, rebalancing
indexes, DCAs and swap streaming or time-based trading
strategies become simple and straightforward to express.

Keychains sign transactions only when a user’s intents
are satisfied. Warden Protocol has an immutable on-chain,
intent engine that acts as a gatekeeper. In order to prioritise
security, minimise attack surface and focus on first princi-
ples, the intent engine is designed as a functional program
with a boolean predicate. Its sole purpose is to determine
the outcome of an intent verification, returning only either
true or false. It is only when a user’s supplied intents are
immutably respected that a keychain can modify a user’s
state. Each time a transaction arrives in the mempool, a
Warden Protocol validator runs the transaction against the
set of user-created intents to verify if they are met. It is only
when an intent validates the transactions, that the Warden
Protocol validators include it in a block on the chain.

Omnichain Interoperability
Currently, there are over 1.000 different chains and over
120 different L1s - each with their own protocol standards,
consensus mechanisms, hashing algorithms and more. These
ecosystems are mostly siloed and inaccessible, causing a
fragmentation of liquidity, services and users. In comparison,
OApps were designed for unprecedented cross-chain inter-
operability, and specifically engineered to overcome isolated
environments. They are designed to sequence actions such

as transfers, swaps and liquidity provisions cross-chain, with
the goal of abstracting away network boundaries.

Collectively, many OApps form an application mesh
topology, where connections are universal and persistent.
New OApp instances are not isolated applications; they join
an ecosystem of connected OApps that can all exchange
information. Users can seamlessly swap their tokens across
supported chains and bridge to 64 connected chains.

Warden Protocol supports cross-chain transactions with
Ethereum and other IBC-enabled chains, and any ECDSA or
EDDSA-based chain supported by a keychain (e.g. Bitcoin).
Tokens launched on Warden Protocol can be exposed to
multiple networks by default - they can scale cross-chain
without needed re-deployment. OApp developers can move
beyond single chain experiences and stop compromising on
audience reach.

Chain Abstraction
Spaces are users’ gateways to the mesh network of OApps
and any other blockchain. They are identity-abstracted,
privacy-preserved, account-aggregated Warden addresses
with which users can interact with OApps or entirely separate
web3 applications. By using key identifiers, each OApp
user can receive an infinite number of remote addresses on
every ECDSA-/EDDSA based blockchain. This research
and development effort introduces a novel programming
primitive, where users could use their space to log into
applications from every chain as a full alternative to most
existing wallet options.

Traditional smart contract applications only target users
of a single chain. Thanks to spaces, OApps can sign
transactions and general messages targeted for any destina-
tion chain. They can sign transactions executed on other
blockchains (e.g. writing to other chains), and thanks to a
direct network integration of listeners can query data and
events from other chains (e.g. reading from other chains).
For example, a particular application chain may need to
know the current price of the token of a second chain. These
cross-chain queries create a multitude of novel OApp use
cases in bridging, multichain DEXs, enabling non-smart
contract enabled chains and many others.

For instance, traditionally web3 users defaulted to CEXs
for multichain experiences because of the complexity of
bridging, the difficulty of handling separate wallets and
managing gas. An OApp developer could use a space with a
deposit address on all chains, thereby eliminating the need to
bridge assets to a single chain to swap, or to bridge to where
assets have most liquidity.

Bridging assets is another potential use case. In some
instances - for example when an underlying asset is too
expensive to slow - like in the case of Ethereum or Bitcoin,
there can be value to wrapping an asset. An OApp developer

Warden Protocol Team | Modular Blockchain Infrastructure for Omnichain Applications bioRχiv | 3

DRAFT

Fig. 2. Creating an intent on Warden Protocol involves an intent definition, tokeniza-
tion, parsing and creating an abstract syntax tree

could build a token bridge using account aggregation, that
keeps an account of deposits of a given token on an address
and issues the respective token balance on another chain.
Additionally, Warden will leverage a modular implemen-
tation of Axelar’s cross-chain communication protocol, to
enable rapid, programmable bridging of assets.

Spaces also enable non-smart contract chains. An OApp can
control externally owned accounts on non-smart contract-
enabled chains, like Bitcoin, Dogecoin or Ripple. An OApp
developer could build a DEX for Bitcoin Ordinals that
handles deposits and executes swaps when two users agree
to trade BTC for the Ordinal or any other BRC20 token.

Transaction Lifecycle
In this section, we provide an overview of how intents
are created, and how signatures are generated. We show
how Alice creates an intent, and how Bob can sign a
transaction. Both users assumed OApp users with funded
spaces. Each of them evaluated different security settings
and picked a governance-verified, on-chain registered
keychain to generate an ECDSA or EDDSA private key
on the secp256k1 or Ed25519 elliptic curve. A node is
any blockchain node in the Warden Protocol network.
Nodes are responsible for routing keychain requests and re-
sponses. A client is any software interacting with the Warden
Protocol that runs on the end users’ machine (e.g. an OApp).

After generating a key, each OApp user can use a sim-
ple intent configurator to create intents and assign them to
application keys. Intent definitions are expressions written
with our intent specific language, ISL, that return true or
false. They don’t add additional elements to transactions.
MsgNewIntent captures the intent definition, its creator and
its name.

When a user creates a new intent, a tokenizer breaks
down the intent definition into tokens, where each token
represents the smallest atomic element of the intent specific
language. A recursive descent parser validates that the
intent definition is syntactically valid. It reads the resulting
token stream and creates an abstract syntax tree (AST).
ASTs are an extensible, formal representation of the syn-
tactic structure of an intent definition and are stored on-chain.

Fig. 3. Illustrative AST for a trivial intent definition, where grey rectangles denote
variable identifiers, white rectangles denote language operators and purple rectan-
gles denote literal values

Alice used a GUI on an OApp to define a trivial intent.
She wants an arbitrary Ethereum transaction to be signed by
any two signers from a list of space owners, or from Bob.
Her intent definition was tokenized, parsed resulting in an
illustrative AST. It’s stored immutably on Warden Protocol
nodes. Using MsgUpdateKey Alice applies her intent to a
key to govern the movement of her assets.

Alice initiates a transaction on an OApp. The client
submits a MsgNewSignatureRequest to a node, containing
the full unsigned Ethereum transaction and specifying the
key to be used for the signature. An action is created
on-chain, preserving Alice’s original message along with
an immutable, frozen, representation of Alice’s intent AST
at this particular time. Prior to constructing the immutable
AST, blockchain modules can dynamically resolve and
expand variables into fixed in-time values. In this example,
space.owners is expanded into a list of three addresses that
were owners of Alice’s space at the time of her MsgNewSig-
natureRequest.

Each construct of the intent specific language maps to
a sequence of verification steps of what must be present
on-chain to satisfy Alice’s intent definition. The variables
of the frozen intent AST are resolved and evaluated de-
terministically on-chain by all the Warden Protocol nodes,
thereby inheriting the protocol security model where one
third of validating power must agree on the outcome of
the evaluation. When the final AST is positively evaluated
MsgNewSignatureRequest is executed.

When MsgNewSignatureRequest is executed, the key-
chain responsible for the key sees the pending signature
request and will pick it up. The keychain signs the data using
the private key and sends a MsgFulfillSignatureRequest
to the node containing the signature. During this process,
Alice’s’ private key is never exposed to the Warden Protocol.

Using a simple example, we described the process of
intent creation and signature generation in the Warden

4 | bioRχiv Warden Protocol Team | Modular Blockchain Infrastructure for Omnichain Applications

DRAFT
Fig. 4. The signature generation process on the Warden Protocol consists of intent
evaluation and keychain operations

Protocol. We purposefully omitted on-chain economics and
fees, instead referring to our tokenomics paper. This includes
distinguishing between variable protocol fees per type of
protocol operation, from simple transactions to keychain
operators or towards more advanced intents.

Contributor Friendliness
A core principle of Warden Protocol is contributor friend-
liness. Contributions can come from developers wishing to
support Warden Protocol or application developers wanting
to deploy their own OApps.

Despite the novel features of OApps like modular se-
curity, omnichain interoperability and chain abstraction,
they are straightforward to build. Warden Protocol comes
with two smart contract execution engines: w-WASM and
w-EVM.

w-WASM is the Turing complete smart contract platform
of the Warden Protocol ecosystem. Built on CosmWasm, it
empowers application developers to create high-performing,
provably secure, multi-chain OApps. The platform comes
with a robust build and test environment, alongside an inte-
grated development environment. Leveraging IBC and its
permissionless relaying of data packets, OApps can execute
transactions across different chains. All contract code is
designed to be agnostic to the details of the underlying chain.
CosmWasm is industry-recognized for its proven security,
effectively neutralising common web3 attack vectors like
reentrancy attacks resulting from concurrent execution of
contract code, short address parameter attacks or exploits
stemming from overflow vulnerabilities.

w-EVM provides an EVM-compatible experience, al-
lowing application developers to bring on existing contracts

to Warden Protocol and seamlessly go omnichain. Thanks
to EVM-compatibility, Warden Protocol can support ex-
isting Ethereum applications and smart contracts without
modification. Ethereum developers can use Solidity or
Vyper, and all the tooling they are used to including familiar
environments (e.g. Foundry, Hardhat or Remix), frontend
libraries (e.g. ether.js, web3.js), node and RPC providers
(e.g. Quicknode or Infura) or popular wallets and protocols
like Metamask, Ledger or WalletConnect. Warden Pro-
tocol EVM-compatibility facilitates an easy migration of
decentralised applications and assets, creating a seamless
experience for those developers that want to transition from
Ethereum to Warden Protocol.

Future work
The goal of this document is to provide an outlook of what the
Warden Protocol is working on. We listed features already
implemented as well as features being worked on. There is
no doubt in the team’s mind that new needs will surface, re-
quirements change or initiatives proposed may be abandoned
- that’s the nature of working on disruptive, groundbreaking
technologies. We are and have been open-sourced from the
first day to pay tribute to this. We encourage readers to do
their own research by following the progress and even view-
ing the status of Github items as they unfold in real time.

Warden Protocol Team | Modular Blockchain Infrastructure for Omnichain Applications bioRχiv | 5

